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Abstract. EL–hyperstructures are hyperstructures constructed from single-

valued quasi-ordered semigroups. For some kinds of sets it is difficult to find a
meaningful single-valued associative operation which could be used as a basis

for constructing the EL–hyperstructure. In this paper we use the systematic

approach to define it. We focus on multicomponent sets and briefly mention
the n–ary context of the construction.

1. Introduction

The study of links between hyperstructures and orderings is one of the classi-
cal topics of the hyperstructure theory connected with names such as Nieminen,
Corsini, Rosenberg, Krasner, Mittas, Davvaz, Leoreanu or Chvalina and their works
published in 1960s to 1990s. Chvalina [6] studied various aspects of this link. One of
these is the relation between quasi-ordered semigroups and hyperstructures. Theo-
retical aspects of one particular construction in this area, resulting in what is known
as EL–hyperstructures, have been studied by Novák in [19, 21], extended to the n–
ary context in [11] and studied in detail in [20]. However, the range of possible
applications of the construction is such that a systematic study of its limitations is
needed (for a variety of uses see Examples 3.6 – 3.9 in this paper).

In fact the main motivation for this paper lies in contexts such as the ones
described in Section 3, Example 3.8 or Example 3.9. In the particular context of
these examples it is various aspects of electrical engineering (such as measurement
of broadband structures in time domain, various high frequency and microwave
techniques, nontraditional measurement of microwave structures in time domain,
etc.) or study of functions modelling growth or increase of certain ecosystems that
can be described by the results included in this paper.

When defining basic concepts of the hyperstructure theory we use definitions
included in [2, 3]. In the n–ary hyperstructure context we follow the approach
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of [17]. For a deeper insight in the issue of hyperstructures and their connection to
n–ary relations cf. e.g. [4, 5]; for ideas concerning the problems connected to n–ary
groups cf. e.g. [12, 13].

2. Preliminaries

In this paper we use standard notions and concepts of hyperstructure theory
such as hypergroupoid, (semi)hypergroup, transposition hypergroup or join space.

We link concepts of the hyperstructure theory to concepts and notions of the
theory of ordered structures such as quasi-ordering, i.e. a reflexive and transitive
relation, or partial ordering, i.e. a reflexive, antisymmetric and transitive relation.
We discuss quasi– or partially ordered (semi)groups, i.e. (semi)groups with the
property a ≤ b implies a · c ≤ b · c and c · a ≤ c · b, where (a, b, c) ∈ S3.

In the last section of the paper we also work with the generalization of some
basic concepts of the hyperstructure theory. Theorems 5.1 and 5.2 make use of the
following three definitions included in [10].

Definition 2.1. [10] Let H be a non-empty set and f be a mapping f : H ×H →
P ∗(H), where P ∗(H) is the set of all non-empty subsets of H. Then f is called a
binary hyperoperation of H. We denote by Hn the cartesian product H × . . .×H,
where H appears n times. An element of Hn will be denoted by (x1, . . . , xn), where
xi ∈ H for any i with 1 ≤ i ≤ n. In general, a mapping f : Hn → P ∗(H) is called
an n–ary hyperoperation and n is called the arity of hyperoperation. Let f be an
n–ary hyperoperation on H and A1, . . . , An subsets of H. We define

f(A1, . . . , An) = ∪{f(x1, . . . , xn)|xi ∈ Ai, i = 1, . . . , n}.

We shall use the following abbreviated notation: the sequence xi, xi+1, . . . , xj will

be denoted by xji . For j < i, xji is the empty set. In this convention

f(x1, . . . , xi, yi+1, . . . , yj , zj+1, . . . , zn)

will be written as f(xi1, y
j
i+1, z

n
j+1).

Definition 2.2. [10] A non-empty set H with an n–ary hyperoperation f : Hn →
P ∗(H) will be called an n–ary hypergroupoid and will be denoted by (H, f). An
n–ary hypergroupoid (H, f) will be called an n–ary semihypergroupoid if and only
if the following associative axiom holds:

(1) f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j )

for every i, j ∈ {1, 2, . . . , n} and x1, x2, . . . , x2n−1 ∈ H.

Definition 2.3. [10] An n–ary semihypergroup (H, f) in which the equation

(2) b ∈ f(ai−1
1 , xi, a

n
i+1)

has the solution xi ∈ H for every a1, . . . ai−1, ai+1, . . . an, b ∈ H and 1 ≤ i ≤ n, is
called an n–ary hypergroup.
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3. The construction

Throughout the paper we test possibilities and limitations offered by the con-
struction discussed in this section. Notice that this construction was introduced
in [6] and expanded in [21, 22]. First of all we give the construction and “set the
borders” to our future considerations. Then we include some examples (both trivial
and non-trivial) to demonstrate problems discussed in further sections.

Lemma 3.1. [6] Let (S, ·,≤) be a partially ordered semigroup. Binary hyperoper-
ation ∗ : S × S → P ′(S) defined by

a ∗ b = [a · b)≤
is associative. The semihypergroup (S, ∗) is commutative if and only if the semi-
group (S, ·) is commutative.

Lemma 3.2. [6] The following conditions are equivalent:

(1) For any pair a, b ∈ S there exists a pair c, c′ ∈ S such that b · c ≤ a and
c′ · b ≤ a

(2) The associated semihypergroup (S, ∗) is a hypergroup.

Remark 3.3. With the exception of “⇐” of the part regarding commutativity,
Lemma 3.1 is valid for quasi-ordered structures as well. Notice that condition 1 of
Lemma 3.2 holds trivially in groups. The issue of semigroups not being groups and
yet creating hypergroups was treated in [19].

Lemma 3.4. [22] Let (H, ·,≤) be a quasi-ordered group and (H, ∗) be the associated
hypergroup. Then (H, ∗) is a transposition hypergroup.

Lemma 3.5. [21] Let (H, ·,≤) be a non-trivial quasi-ordered group, where the re-
lation ≤ is not the identity relation, and let (H, ∗) be its associated transposition
hypergroup. Then (H, ∗) does not have a scalar identity.

Thus we see that the construction, known as the Ends lemma, gives rise to
semihypergroups, hypergroups, transposition hypergroups and join spaces yet not
canonical hypergroups. Such hyperstructures have since [18] been called EL–
hyperstructures. For further reading on this type of hyperstructures cf. e.g. [19, 20,
21].

Meaning of the above construction may be described in popular words as “ev-
erything above the product of two elements”, “all descendants of two parents”,
“everything resulting from the fact that two elements have met”, etc. It has been
used (or can be used) in the study of differential / integro-differential / transla-
tion operators of various kinds [7, 8, 14], of some areas of physics or chemistry, of
family relations between individuals based on tissue samples, preference relations
in microeconomics [9], etc.

Example 3.6. Consider the set N of all natural numbers (excluding 0). Obviously
(N, ·,≤), where · is the usual multiplication and ≤ is the natural ordering of natural
numbers, is a quasi-ordered semigroup. Thus if we define

a ∗ b = [a · b)≤ = {x ∈ N; a · b ≤ x},
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for all a, b ∈ N, then (N, ∗) is a semihypergroup.

Example 3.7. If in the previous example we consider the set R of all real numbers
and consider the usual addition and ordering of real numbers, then (R,+,≤) is a
quasi-ordered group. Thus if we define ∗ analogically as in the previous example,
we get that (R, ∗) is a semihypergroup. Thanks to Lemma 3.2, 3.2 and 3.5, it is a
transposition hypergroup, yet it is not a canonical hypergroup.

Example 3.8. (included in [7], used to demonstrate some results of [21]) We study
the relation of hyperstructures and homogeneous second order linear differential
equations

y′′ + p(x)y′ + q(x)y = 0,(3)

such that p ∈ C+(I), q ∈ C(I), where Ck(I) denotes the commutative ring of all
continuous real functions of one variable defined on an open interval I of reals with
continuous derivatives up to order k ≥ 0 (instead of C0(I) we write only C(I)),
and C+(I) denotes its subsemiring of all positive continuous functions. The set of
nonsingular ordinary differential equations (3) is denoted A2. The pair of functions
p, q is denoted [p, q], D = d

dx and Id is the identity operator. The notation L(p, q)

is reserved for the differential operator L(p, q) = D2 + p(x)D + q(x)Id, i.e. the
notation L(p, q)(y) = 0 is the equation (3). The set

LA2(I) = {L(p, q) : C2(I)→ C(I); [p, q] ∈ C+(I)× C(I)}(4)

is the set of all such operators. Finally, for an arbitrary r ∈ R the notation χr :
I → R stands for the constant function with value r.

Proposition 1 of [7] states that if we define multiplication of operators by

L(p1, q1) · L(p2, q2) = L(p1p2, p1q2 + q1)(5)

and if we define that L(p1, q1) ≤ L(p2, q2) if

p1(x) = p2(x), q1(x) ≤ q2(x) for any x ∈ I,(6)

then (LA2(I), ·,≤) is a noncommutative partially ordered group with the unit el-
ement (identity) L(χ1, χ0). Using Lemma 3.1, Lemma 3.2 and Lemma 3.4 we get
that if we put

L(p1, q1) ∗ L(p2, q2) =

= {L(p, q) ∈ LA2(I);L(p1, q1) · L(p2, q2) ≤ L(p, q)} =(7)

= {L(p1p2, q); q ∈ C(I), p1q2 + q1 ≤ q} ,

then (LA2(I), ∗) is a transposition hypergroup ([7], Theorem 3).

In Example 3.8 we can see that unlike in Examples 3.6 or 3.7, the elements of
H (in case of Example 3.8, H is LA2(I)) have two components.

Furthermore, Křehĺık [15, 16] has been interested in the issue of structured sys-
tems and multiautomata in analysis of processes and signals. In this respect one
may study and make use of phenomena such as Gaussian–shaped pulsed signals or
Chapman-Richard’s models of growth (for an application of this model see [1]).
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Example 3.9. Consider the function of the Gaussian-shaped pulse signal v(t) =
a exp(−2πt2), where a ∈ R+. When regarding the second order linear differential
equation in the Jacobi form, i.e. v′′(t) + p(t)v(t) = 0, where p is a continuous
function, and creating hyperstructures of the respective linear differential operators
using the Ends lemma following the pattern of Example 3.8, we see that we get
a one-parametric system, i.e. an analogy of the simple Examples 3.6 or 3.7, as
the operators have the form L(0, ϕ(a)), where ϕ stands for a suitable function of
a ∈ R+.

However, if we want to apply similar reasoning on e.g. Chapman-Richard’s func-
tion y(t) = A · [1−exp(−ct)]b, we see that in the same context the linear differential
operators are of the form L(0, ϕ(b, c)). Notice that not only two-parametric but
also three-parametric Chapman-Richard’s models are used, which would result in
the linear differential operators of the form L(0, ϕ), where ϕ is a function of three
variables.

Roughly speaking, in order to construct EL–hyperstructures the first thing we
need is a single-valued quasi-ordered semigroup. Yet how can we reasonably and
meaningfully define single-valued operations for more-component elements (or for
arity higher than 2) so that we get single-valued semigroups with reasonable and
meaningful quasi-orderings?

4. Binary context, more-component elements

When giving an answer to the above stated question, one might use an ad hoc
approach, i.e. treat each case as sui generis and base the definition of the single
valued operation on specific properties of the objects studied. This is e.g. the case
of the set of operators studied in Chvalina – Křehĺık – Novák presentation given at
the 12th AHA concerning the Volterra operators and the Laplace transform.

However, in this paper we are going to use the systematic approach, i.e. test
the most likely and common operations which can be performed on an arbitrary
set. We are going to demonstrate this approach on two–parametric systems, i.e.
all a ∈ H, where H is the set which will be used as the basis of our considerations
in Lemma 3.1, will be of the form a = (a1, a2), where components a1, a2 are of a
suitable type (number, matrix, polynomial, function, etc.)

It is easy to transfer our reasoning to n–parametric systems for most cases.
Notice that what we present further on is a selection of possibilities only, as naturally
there exists an infinite number of possible operations which can be defined instead.
Should any special properties of H or of the operation defined on it or components
of its elements be required, they will always be mentioned at respective places
further on in the text.

4.1. Operations applied on all components.

Definition 4.1. For all a = (a1, a2), b = (b1, b2) ∈ H, where H is a suitable set,
define · : H ×H → H by

a · b = (a1 + a2 + b1 + b2, a1 ⊕ a2 ⊕ b1 ⊕ b2),
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where +,⊕ are suitable operations applied on components of elements of H.

Theorem 4.2. Let H be a set of elements of the form a = (a1, a2). Define an
operation · on H using Definition 4.1. Then (H, ·) is a semigroup if operations +,⊕
are identical and simultanously they are associative, commutative and idempotent.

Proof. Suppose an arbitrary triplet of elements a, b, c ∈ H such that a = (a1, a2), b =
(b1, b2), c = (c1, c2). We need to prove that a · (b · c) = (a · b) · c. As far as the
left-hand side is concerned, we get that

b · c = (b1 + b2 + c1 + c2, b1 ⊕ b2 ⊕ c1 ⊕ c2)

and

a·(b·c) = (a1+a2+(b1+b2+c1+c2)+(b1⊕b2⊕c1⊕c2), a1⊕a2⊕(b1+b2+c1+c2)⊕(b1⊕b2⊕c1⊕c2)).

As far as the right-hand side is concerned,

a · b = (a1 + a2 + b1 + b2, a1 ⊕ a2 ⊕ b1 ⊕ b2)

and

(a·b)·c = ((a1+a2+b1+b2)+(a1⊕a2⊕b1⊕b2)+c1+c2, (a1+a2+b1+b2)⊕(a1⊕a2⊕b1⊕b2)⊕c1⊕c2).

One can easily see that if the operations + and ⊕ are identical and on top of that
if they are associative, commutative and idempotent, both sides of the equality
reduce to (a1 + a2 + b1 + b2 + c1 + c2, a1 + a2 + b1 + b2 + c1 + c2). �

Example 4.3. Let H = {(P,R);P,R ⊆ P(S)}, where S is a suitable set. For
(A,B), (C,D) ∈ H define

(A,B) · (C,D) = (A ∩B ∩ C ∩D,A ∩B ∩ C ∩D).

Then (H, ·) is a semigroup, which (after we supplement it with a suitable quasi-
ordering ≤) may be taken as a basis for constructing the EL–semihypergroup by

(A,B) ∗ (C,D) = [(A,B) · (C,D))≤

using Lemma 3.1.

4.2. Component-wise operations.

Definition 4.4. For all a = (a1, a2), b = (b1, b2) ∈ H, where H is a suitable set,
define · : H ×H → H by

a · b = (a1 + b1, a2 ⊕ b2),

where +,⊕ are suitable operations applied on components of elements of H.

Theorem 4.5. Let H be a set of elements of the form a = (a1, a2). Define an
operation · on H using Definition 4.4. Then (H, ·) is a semigroup if and only if
both operations +,⊕ are associative.

Proof. The structure of the proof will be the same as the structure of the proof of
Theorem 4.1. We get that

(a · b) · c = ((a1 + b1) + c1, (a2 ⊕ b2)⊕ c2)
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while
a · (b · c) = (a1 + (b1 + c1), a2 ⊕ (b2 ⊕ c2)).

Obviously these are equal if and only if both operations + and ⊕ are associative. �

Example 4.6. Let H = {(r, s); r, s ∈ R}. For (x1, x2), (y1, y2) ∈ H define

(x1, x2) · (y1, y2) = (x1 + y1, x2y2),

where the operations applied on components are the usual addition and multipli-
cation of real numbers. Then (H, ·) is a semigroup, which (after we supplement
it with a suitable quasi-ordering ≤) may be taken as a basis for constructing the
EL–semihypergroup by

(x1, x2) ∗ (y1, y2) = [(x1, x2) · (y1, y2))≤

using Lemma 3.1.

4.3. Generalization of the former case.

Definition 4.7. For all a = (a1, a2), b = (b1, b2) ∈ H, where H is a suitable set,
define · : H ×H → H by

a · b = (k1(a1) + k2(b1), l1(a2)⊕ l2(b2)),

where +,⊕ are suitable operations applied on components of elements of H and
ki, li, i = 1, 2, are suitable functions.

In the above mentioned definition we are interested in cases such as the one
mentioned in the following example.

Example 4.8. Let H = {(r, s); r, s ∈ R}. For (a1, a2), (b1, b2) ∈ H define

(a1, a2) · (b1, b2) = (sin a1 + eb1 , |a2| ln b2).

If we apply the same reasoning as suggested in the proofs of Theorem 4.2 and
Theorem 4.5, we get that

a · b = (k1(a1) + k2(b1), l1(a2)⊕ l2(b2))

and

(8) (a · b) · c = (k1(k1(a1) + k2(b1)) + k2(c1), l1(l1(a2)⊕ l2(b2))⊕ l2(c2))

while
b · c = (k1(b1) + k2(c1), l1(b2)⊕ l2(c2))

and

(9) a · (b · c) = (k1(a1) + k2(k1(b1) + k2(c1)), l1(a2)⊕ l2(l1(b2)⊕ l2(c2))).

And it is obvious that the equality (a · b) · c = a · (b · c) does not hold in general.
Yet if k1 = k2 (denote these by k), l1 = l2 (denote these by l), then · is associative
if and only if

k(k(ai) + k(bi)) + k(ci) = k(ai) + k(k(bi) + k(ci)), for i = 1, 2(10)

for all (a1, a2), (b1, b2), (c1, c2) ∈ H (and likewise for l). Within this we may identify
some special cases where the condition (10) holds. These include e.g. cases when
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(1) k = l = Id, i.e. the case introduced by Definition 4.4,
(2) k, l are constant mappings and + and ⊕ are associative,
(3) k, l are homomorphisms and k(k(x)) = k(x) for all x ∈ Dom(k) (and like-

wise for l).

Example 4.9. Let H = {(r, s); r, s ∈ R}. For (a1, a2), (b1, b2) ∈ H define

(a1, a2) · (b1, b2) = (|a1|+ |b1|, |a2|+ |b2|).
Then (H, ·) is a semigroup, which (after we supplement it with a suitable quasi
ordering ≤) may be taken as a basis for constructing the EL–semihypergroup by

(a1, a2) ∗ (b1, b2) = [(a1, a2) · (b1, b2))≤.

using Lemma 3.1.

Remark 4.10. Notice that in Example 4.9 condition (10) holds, yet the example is
of none of the special types discussed above. Also, the components need not make
use of the same operation. One of them might e.g. be multiplication of absolute
values instead of their sum.

4.4. A special case of numerical ki, li, i = 1, 2. Suppose now that instead of
regarding arbitrary functions ki, li, i = 1, 2 we regard multiplication by a constant
technically performed in accordance with the nature of components of the elements
of H. In other words, for numerical components we regard multiplication of the
component by a fixed number, for components being matrices we regard multiples
of matrices, for polynomials multiples of polynomials, for functions pointwise mul-
tiplication by a constant, etc. Thus instead of ki(aj), li(aj), i, j = 1, 2 we will write
kiaj , liaj .

Example 4.11. Let H = {(r, s); r, s ∈ R}. For (a1, a2), (b1, b2) ∈ H define

(a1, a2) · (b1, b2) = (2a1 + 3b1,
1

2
a2

3

4
b2),

i.e. in this particular case there is k1 = 2, k2 = 3, l1 = 1
2 , l2 = 3

4 .

Definition 4.12. For all a = (a1, a2), b = (b1, b2) ∈ H, where H is a suitable set,
define · : H ×H → H by

a · b = (k1a1 + k2b1, l1a2 ⊕ l2b2),

where +,⊕ are suitable operations applied on components of elements of H and
ki, li, i = 1, 2, are fixed real numbers.

Theorem 4.13. Let H be a set of elements of the form a = (a1, a2). Define an
operation · on H using Definition 4.12. Then (H, ·) is a semigroup if and only if the
multiplication by ki, for i = 1, 2, is distributive over + (and likewise multiplication
by li for i = 1, 2 distributive over ⊕), there is ki(kjam) = (kikj)am = kikjam for
i, j,m ∈ {1, 2} (and likewise for l) and simultaneously ki, li ∈ {0, 1} for i = 1, 2.

Proof. In this new context the reasoning included in Subsection 4.3 changes (under
the condition of distributivity) to

(a · b) · c = (k1k1a1 + k1k2b1 + k2c1, l1l1a2 + l1l2b2 + l2c2)
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while
a · (b · c) = (k1a1 + k2k1b1 + k2k2c1, l1a2 + l2l1b2 + l2l2c2).

Since we must secure that multiplication of coefficients ki, li, i = 1, 2 is idempotent,
the choice of their values is obvious. �

Remark 4.14. In fact we require multiplication of coefficients k, l to have some
properties of an outer operation on (H, ·).

Example 4.15. Let H = {(r, s); r, s ∈ R}. For (a1, a2), (b1, b2) ∈ H define

(a1, a2) · (b1, b2) = (a1,min{a2, b2})
Then (H, ·) is a semigroup which can be taken as a basis for an EL–semihypergroup.

Example 4.16. Let H = {(P,R);P,R ⊆ P(S)}, where S is a suitable set. For
(A,B), (C,D) ∈ H define

(A,B) · (C,D) = (A ∪ C,D).

Then (H, ·) is a semigroup which can again be taken as a basis for an EL–semihypergroup..

4.5. Functions applied on components. We may point out another special case
of Definition 4.7 – application of a given function on certain specified components
of elements of H. By setting k1 = f, k2 ≡ 0, l1 ≡ 0, l2 = g we get the following.

Definition 4.17. For all a = (a1, a2), b = (b1, b2) ∈ H, where H is a suitable set,
define · : H ×H → H by

a · b = (f(a1), g(b2)),

where f, g are suitable functions applied on the components.

Corollary 4.18. Let H be a set of elements of the form a = (a1, a2). Define an
operation · on H using Definition 4.17. Then (H, ·) is a semigroup if and only if
f(x) = f(f(x)) and g(y) = g(g(y)) for all x ∈ Dom(f) or y ∈ Dom(g) respectively.

Proof. Follows immediately from (8) and (9) by setting k1 = f, k2 ≡ 0, l1 ≡ 0, l2 =
g. �

Remark 4.19. Cases such as a · b = (f(a2), g(b1)) are associative only in very
special cases (such as f ≡ g and both being constant).

Example 4.20. Let HR = {(r, s); r, s ∈ R}. For (a1, a2), (b1, b2) ∈ H define

(a1, a2) · (b1, b2) = (|a1|, sgn(b2)).

Then (HR, ·) is a semigroup.

Example 4.21. Let HM = {(M1,M2);M1,M2 ∈ SqMat}, where SqMat is the set
of all square matrices (regardless of size). For (M1,M2), (N1, N2) ∈ H define

(M1,M2) · (N1, N2) = (det(M1), tr(N2)).

Then (HM , ·) is a semigroup.

In Example 4.21 we have used determinant and trace of a matrix. In the con-
text of polynomials we could use instruments such as the sum of its coefficients,
coefficient of the absolute term, derivative of a suitable order, etc.
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4.6. Comparison of the two approaches. Compare Example 3.8, where

(11) L(p1, q1) · L(p2, q2) = L(p1p2, p1q2 + q1).

and the above Example 4.21, where

(12) (M1,M2) · (N1, N2) = (det(M1), tr(N2)).

One can see that the result of the multiplication is either “of the same type” (a fully
meaningful operator as in (11)) or “of different quality” (a matrix which is however
a matrix only formally, because its potential lies in the fact that it can be treated
as a number). In the following example, which is a continuation of Example 4.21,
we show that the latter approach may be well used in the context of Lemma 3.1
and EL–hyperstructures.

Example 4.22. For (M1,M2), (N1, N2) ∈ HM define

(M1,M2) ≤ (N1, N2)⇔ det(M1) = det(N1) and tr(M2) ≤ tr(N2)

and define

(M1,M2) ∗ (N1, N2) = [(M1,M2) · (N1, N2))≤.

Then based on Lemma 3.1 we get that (HM , ∗) is a semihypergroup.

For more ideas for (and obstacles when) defining EL–hyperstructures on sets of
matrices cf. e.g. [22].

4.7. Some negative examples. Examples of operations which in spite of being
“logical picks” are not associative include definitions of · such that e.g.:

(1) a · b = (f(a1 + a2), g(b1⊕ b2)), where f, g are functions; not even for f ≡ g,
+ ≡ ⊕,

(2) a · b = (f(a1 + b1), g(a2 ⊕ b2)), i.e. functions applied on the result of
component-wise operations; if f, g are not homomorphisms, then this is
associative only in very special contexts,

(3) “combining components” such as e.g. a ·b = (b2, a1) or a ·b = (f(a1), g(b1)).

5. n–ary context

From the binary context of Lemma 3.1, where the hyperoperation on a semigroup
(H, ·) is defined by

a ∗ b = [a · b)≤ = {x ∈ H; a · b ≤ x}
we may proceed to the n–ary context, i.e. define

a1 ∗ . . . ∗ an︸ ︷︷ ︸
n

= [a1 · . . . · an︸ ︷︷ ︸
n

)≤ = {x ∈ H; a1 · . . . · an︸ ︷︷ ︸
n

≤ x}

or in the standard n–ary notation

f(an1 ) = [a1 · . . . · an︸ ︷︷ ︸
n

)≤ = {x ∈ H; a1 · . . . · an︸ ︷︷ ︸
n

≤ x}.

Yet prior to doing this two important issues must be considered:
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(1) How do we obtain the single-valued product, i.e. what is the arity of the
single-valued operation?

(2) Is ∗ (i.e. f) an n–ary or an iterated binary hyperoperation?

The n–ary context of the Ends lemma was first examined in an example included
in [11], which was a generalisation of an example included in [14]. However, it
was properly studied in detail only in [20], where the following two results are
included. Both of them are based on the idea that in f(an1 ) = [a1 · . . . · an︸ ︷︷ ︸

n

)≤ =

{x ∈ H; a1 · . . . · an︸ ︷︷ ︸
n

≤ x} we consider the iterated binary single-valued operation

and an n–ary hyperoperation.

Theorem 5.1. [20] Let (H, ·,≤) be a quasi-ordered semigroup. n–ary hyperopera-
tion f : Hn → P∗(H) defined as

f(an1 ) = [a1 · . . . · an︸ ︷︷ ︸
n

)≤ = {x ∈ H; a1 · . . . · an︸ ︷︷ ︸
n

≤ x}.

is associative. Furthermore, it is commutative if the semigroup (H, ·) is commuta-
tive.

Theorem 5.2. [20] Let (H, ·,≤) be a quasi-ordered group. n–ary EL–semihypergroup
constructed as above is an n–ary hypergroup.

For details and further results concerning the n–ary context of the construction
cf. [20].
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[11] A. Dehghan Nezhad, B. Davvaz, Universal hyperdynamical systems, Bull. Korean Math. Soc.
47(3) (2010), 513–526.

[12] W. A. Dudek, On some old and new problems in n–ary groups, Quasigroups and Related

Systems, 8 (2001), 15–36.
[13] W. A. Dudek, Remarks to Glazek’s results on n–ary groups, Discussiones Mathematicae

General Algebra and Applications,27 (2007), 199–233.
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